domingo, 16 de febrero de 2014

REGRESION LINEAL



REGRESIÓN LINEAL SIMPLE

El modelo de regresión y la ecuación de regresión

En el ejemplo, cada restaurante está asociado con un valor de
X (población estudiantil en miles de estudiantes) y un valor correspondiente de y (ventas trimestrales en miles de $). La ecuación que describe cómo se relaciona y con xy con un término de error se llama modelo de regresión. Éste usado en la regresión lineal simple es el siguiente:
Modelo de regresión lineal simple:
y = β0 + β1 x + εβ0 y β1 son los parámetros del modelo. Ε es una variable aleatoria, llamada error, que explica la variabilidad en y que no se puede explicar con la relación lineal entre xy .
Los errores, ε, se consideran variables aleatorias independientes distribuidas normalmente con media cero y desviación estándar σ. Esto implica que el valor medio o valor esperado de y, ε denotado por (Y/x), es igual a β0 + β1 x.
Ecuación de regresión lineal simple:
E(y/x) = β0 + β1 x
(μY/x=E(Y/x))


La ecuación estimada de regresión (lineal simple)
Los parámetros, β0y β1, del modelo se estiman por los estadísticos muestrales b0 y b1, los cuales se calculan usando el método de mínimos cuadrados.

Ecuación Estimada de regresión lineal simple:

ŷ = b0 + b1 x
En la regresión lineal simple, la gráfica de la ecuación de regresión se llama línea de regresión estimada, ŷ es el valor estimado de y para un valor específico de x.

No hay comentarios:

Publicar un comentario